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A B S T R A C T   

Current theories propose that our sense of curiosity is determined by the learning progress or information gain 
that our cognitive system expects to make. However, few studies have explicitly tried to quantify subjective 
information gain and link it to measures of curiosity. Here, we asked people to report their curiosity about the 
intrinsically engaging perceptual ‘puzzles’ known as Mooney images, and to report on the strength of their aha 
experience upon revealing the solution image (curiosity relief). We also asked our participants (279) to make a 
guess concerning the solution of the image, and used the distribution of these guesses to compute the crowd-
sourced semantic entropy (or ambiguity) of the images, as a measure of the potential for information gain. Our 
results confirm that curiosity and, even more so, aha experience is substantially associated with this semantic 
information gain measure. These findings support the expected information gain theory of curiosity and suggest 
that the aha experience or intrinsic reward is driven by the actual information gain. In an unannounced memory 
part, we also established that the often reported influence of curiosity on memory is fully mediated by the aha 
experience or curiosity relief. We discuss the implications of our results for the burgeoning fields of curiosity and 
psychoaesthetics.   

1. Introduction 

Why do we need a sense of curiosity? One plausible answer emerging 
from the recent revival of curiosity research (Gottlieb & Oudeyer, 2018; 
Kidd & Hayden, 2015) is that learning is costly. We need some sense of 
whether we will be able to make progress in learning the structure of our 
world, or we will just be wasting valuable computational resources. We 
need to navigate to activities or environments that will reveal learnable 
regularities and avoid spending limited resources on input variability 
that is either due to mere noise or to regularities that are just too com-
plex given the mental models (competence) we currently possess. This is 
the role of curiosity defined as a type of motivation that is inherent 
within information processing, no matter the immediate adaptive value 
of the processed information (Hunt, 1981; Livson, 1967). 

Indeed, from very early on in development, infants show a keen 
sensitivity for this. For example, 17-month-old infants intuitively attend 
more to learnable than to unlearnable artificial grammars, hence 

avoiding to labor in vain on inputs without learnable patterns (Gerken, 
Balcomb, & Minton, 2011). Similarly, in the so-called Goldilocks effect, 
very young infants selectively pay attention to visual or auditory ma-
terials of intermediate predictability (Kidd, Piantadosi, & Aslin, 2012, 
2014), again preventing a waste of computational resources on inputs 
that are already known (too simple) or unknowable (too unpredictable). 
These early signs of curiosity, measured by looking time, align with 
measures of interest and curiosity later in life, often showing a similar 
focus on materials (be it artworks or artificial stimuli) of medium 
complexity (Berlyne, 1966; Day, 1981). 

These strands of evidence, together with work in developmental 
robotics and computational neuroscience (Gottlieb, Oudeyer, Lopes, & 
Baranes, 2013; Schmidhuber, 2009), have converged on a concept of 
curiosity as expected learning progress or information gain. It casts 
curiosity as a metacognitive feeling based on specific information- 
theoretic principles and directing us to the best opportunities for 
learning. It is metacognitive because it is rooted in an evaluation of 
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whether there is sufficient ground to (continue trying to) learn particular 
materials (Metcalfe, Schwartz, & Eich, 2020). In other words, it “in-
dicates when there’s a match between the presented learning material 
and the learner’s readiness to encode it” (Wade & Kidd, 2019), ensuring 
that we remain as much as possible in the so-called “zone of proximal 
development” (Vygotsky, 1962), the optimal region of learning. This 
concept of curiosity goes beyond the influential “information gap” the-
ory (Loewenstein, 1994). Indeed, it is not sufficient to notice a gap in 
your knowledge (uncertainty) to become curious. In addition, curiosity 
requires a meta-cognitive expectation that the gap is bridgeable with 
current capacities, in other words, that the uncertainty is resolvable, so 
we can ‘cope’ with it (see also, Silvia, 2005). 

An account based on learning progress or information gain can 
explain why we often are most curious about medium uncertainty. 
Indeed, we can usually expect to make progress here, because medium 
uncertainty often implies we have at least some mental models for this 
domain. However, crucially, such an account does not enforce an 
inverted U-shape relation between uncertainty and curiosity. Indeed, 
contrary to the seminal works of Berlyne and Loewenstein, an infor-
mation gain account predicts a monotonically increasing relation be-
tween uncertainty and curiosity, as long as the uncertainty in question is 
expected to be reducible. Evidently, the potential for learning progress 
increases with uncertainty. 

The evidence for intermediate uncertainty being most curiosity- 
inducing is indeed mixed. While some studies have found support for 
medium uncertainty or confidence about a solution (Baranes, Oudeyer, 
& Gottlieb, 2015; Kang et al., 2009; Marvin & Shohamy, 2016), usually 
in the context of curiosity about trivia questions, others showed that 
curiosity or exploration monotonically increases with uncertainty (van 
Lieshout, Vandenbroucke, Müller, Cools, & de Lange, 2018). These in-
consistencies may be due in part to a lack of consideration for the ex-
pected reducibility of the uncertainty studied (subjective appraisal of 
one’s coping potential). However, another major difficulty is the quan-
tification of subjective uncertainty (and expected information gain) as 
such. Self-reported confidence ratings or objective stimulus-based un-
certainty measures at best crudely approximate and at worst seriously 
misestimate that parameter. 

Here, we use a new way of quantifying subjective uncertainty and 
information gain, for stimuli that have not been used before in curiosity 
research, namely Mooney images. Mooney images (Mooney & Ferguson, 
1951), the most famous example of which is the ‘camouflaged’ Dalma-
tian, are constructed by blurring and thresholding natural grayscale 
images to arrive at irregular black-and-white patchworks, often impos-
sible to recognize without extra cues (see Fig. 1). These images have 
already given us many insights into our visual system (e.g., Dolan et al., 
1997; Gorlin et al., 2012; Hegdé & Kersten, 2010) and they have a 

couple of features that make them extremely suited for curiosity 
research as well. Mooney images are naturally engaging perceptual 
‘puzzles’ for participants. They can elicit a strong tip-of-the-tongue 
feeling (the feeling of being on the brink of resolution), associated 
with curiosity (Metcalfe et al., 2020). In other words, they often give a 
sense that the uncertainty is reducible with continued sampling (eye 
fixations) and mental effort. With the best instances of Mooney images, 
perceivers also experience a strong phenomenological shift when 
eventually they autonomously discover (or are shown) the solution: One 
cannot ‘unsee’ it when again confronted with the same Mooney image 
(cf. one-shot learning; Giovannelli et al., 2010; Ishikawa & Mogi, 2011). 
The disambiguation is usually accompanied by an Aha-Erlebnis (Kou-
nios & Beeman, 2014), a positive feeling of insight and relief. 

The extent to which the experience of these images follows that 
prototypical Mooney character, i.e., the instant ‘click’ of recognition and 
the strong aha experience, depends on both individual factors (e.g., 
previous experience), as well as image-based factors (notably the level of 
‘support’ for the solution). However, very little is known about the 
specific factors determining the positive aha experience. One tempting 
hypothesis is that where curiosity gauges expected information gain, the 
aha marks actual information gain: the intrinsic reward of curiosity relief. 
Information gain quantifies the reduction in uncertainty after the solu-
tion is known (it is also known as relative entropy, with entropy being 
the information-theoretic measure of uncertainty; Cover & Thomas, 
1991). Theoretically, the idea is that a perceiver’s visual system has a 
particular probability distribution over candidate hypotheses or possible 
“hidden causes” for a given Mooney image. However, at this stage, its 
meaning is still ambiguous. Once the solution is known, all probability 
mass is concentrated on one best-supported hidden cause that explains 
the image features well (virtually zero uncertainty). In other words, the 
shift in the probability distribution over the hypothesis space should be 
proportional to the aha experience. Assuming that the posterior entropy 
is indeed zero, the initial entropy can be used as an estimate of the in-
formation gain or reduction in entropy (the shift). Still, this entropy 
cannot be directly measured for any particular subject and image com-
bination (i.e., we do not know yet how such distributions are encoded in 
neural activity). Here, we approximated this semantic entropy of an 
image by ‘crowdsourcing’ the distribution based on the counts of the 
guesses made by our total sample of participants. Under the assumption 
that curiosity measures expected uncertainty reduction (or information 
gain) and the relief (aha) is proportional to the actual uncertainty 
reduction, we asked to what extent people’s curiosity before the reveal 
accurately predicts their post-reveal aha experience, and whether both 
indeed correlate with semantic entropy. 

Another outstanding question in curiosity research concerns the 
relation of curiosity with memory. Given curiosity’s above-mentioned 

Fig. 1. Mooney or two-tone image (left) and its grayscale source (solution) image (right).  
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role in making learning more efficient, a positive influence of curiosity 
on memory is to be expected. Indeed, several studies have gathered 
evidence that items for which participants reported higher curiosity, 
were also better remembered, sometimes up to weeks later (Gruber, 
Gelman, & Ranganath, 2014; Kang et al., 2009). However, a recent study 
suggests this effect might not be quite as strong as one would expect 
(Wade & Kidd, 2019). Importantly, most of these studies did not mea-
sure the participants’ reaction upon revealing the answer or solution for 
the item. Specifically, the intrinsic reward of curiosity relief could be a 
crucial mediator of the encoding strength in memory. While one study 
found a positive correlation between amygdala activity at reveal and 
solution memory for Mooney images (Ludmer, Dudai, & Rubin, 2011), 
no previous study related the strength of the positive aha experience to 
memory. To sum up, we use Mooney images to investigate whether 
curiosity and curiosity relief are driven by subjective uncertainty and 
(potential) information gain, and whether curiosity and curiosity relief 
have independent effects on memory. 

2. Methods 

2.1. Participants 

280 first-year psychology students (242 women) completed the study 
for course credits, 194 from collective testing sessions, and 86 from in-
dividual web-based sessions. The procedure was exactly the same for 
both. One participant was removed because she responded with the 
exact same level of curiosity on all images (making it impossible to 
compute z-scores). 

This study was approved by the Social and Societal Ethical Com-
mittee of the KU Leuven and all participants gave explicit informed 
consent. 

2.2. Stimuli 

The prototypical Mooney images cannot be recognized without cues 
or sufficient time and effort, but become instantly recognizable as soon 
as the grayscale source image has been revealed once. Upon recognition, 
a strong phenomenological shift takes place when the observer is con-
fronted with the Mooney again. In the prototypical cases, one cannot 
‘unsee’ it (even after considerable delay), and a positive Aha-Erlebnis is 
felt with this perceptual ‘insight’. However, there is considerable indi-
vidual variability in these characteristics (i.e., different people will 
experience the Mooney-effect for different images, to a different extent). 
For all these reasons, there is no automated way to create such images 
and not all grayscale source images are equally suited to generate 
Mooney versions (depending on lighting, object segmentation, back-
ground texture, etc.). Hence, we used a combination of automatized 
Mooney generation, hand selection, and piloting to create and narrow 
down the stimulus set. 

First, a very large set of Mooney images was created from grayscale 
images (‘solutions’) by the procedure and code modified from Imamo-
glu, Kahnt, Koch, and Haynes (2012), using source images from the 
Caltech 256 (Griffin, Holub, & Perona, 2007) and MemCat (Goet-
schalckx & Wagemans, 2019) image databases. The former is a validated 
set of at least 80 different images for 256 everyday object categories, 
which has been used to benchmark object recognition in AI systems. The 
latter is an image set consisting of five broader semantic categories 
(animal, sports, food, landscapes, vehicles), with 2 K exemplars each, 
further divided into different subcategories (e.g., bear, pigeon, cat, etc. 
for the animal category). The actual “Mooneyfication” process consists 
of grayscaling, low-pass filtering, and thresholding an image such that 
grayscale values below a certain value become white and those above 
this value become black (hence two tones). The optimal threshold is 
determined by Otsu’s method, which maximizes the variance between 
the two classes of pixels which are separated by the threshold (equiva-
lently, it minimizes intra-class variance) (van der Walt et al., 2014). 

To reduce the set size and obtain good Mooney candidates, we first 
eliminated images 1) that contained less or more than one identifiable 
foreground object, 2) that had little or no discernible structure after 
Mooneyfication (i.e. excluding images that had few, very large patches 
of black or white), or 3) in which the object was still overly obvious after 
Mooneyfication. The remaining 755 candidate Mooneys were presented 
(in two one-hour sessions) to 8 motivated participants. In this pretest, we 
only asked people whether (y/n) they recognized the object and to what 
extent seeing the solution induced an aha-experience (on a 7-point 
scale). Based on the results, we removed those images that were 
recognized without help by most participants (images with >0.8 
recognition rate) and kept those that generated at least some aha 
experience (images with >3.7 aha strength). Only Mooney images with 
low initial recognition rate and high post-solution aha were selected for 
the current study. The images all had a width and height between 250 
pixels and 750 pixels. All stimulus creation and selection procedures are 
documented in the Open Science Framework (see Analysis section). 

2.3. Procedure 

In the first part of the study (Fig. 2), participants were shown a fix-
ation cross (200 ms) and then a Mooney image for 3 s followed by two 7- 
point rating scales. On one scale they indicated the curiosity they felt 
when seeing the image (“indifferent” to “very curious”), and on the 
other how confident they were about the solution of the image (“no clue 
at all” to “very certain about my answer”). On the next screen, partici-
pants were encouraged to make their guess concerning the content of the 
Mooney with a typed response. Participants were informed in the in-
structions that all images depicted objects from one of the following 
broad-level categories: animals, inanimate objects, plants, sports, vehi-
cles, and food. Hence, a good guess means knowing more than these 
broad labels for a given image. We used examples (e.g., when a parrot is 
depicted, “parrot” or “bird” is correct, but not “animal”) to indicate that 
we were looking for basic- or subordinate-level categories. After making 
their guess, the solution (grayscale image) was shown (2 s), followed by 
the Mooney image again (2 s). This is the moment the participant will 
(or will not) experience the phenomenological shift. Immediately af-
terward, they were required to indicate the strength of their aha expe-
rience, again on a 7-point rating scale (from “absent” to “very intense”). 
The aha experience is further described in the instructions as the “pos-
itive feeling of the ‘click’ you sometimes experience when the pieces of 
the ‘puzzle’ fall together and you suddenly have ‘insight’ in the image”. 
Each participant received a random set of 80 Mooney images (never 
more than 3 from the same category) out of the total set of 203. 

In the second part, participants saw all images again (for 2 s), sup-
plemented by 20 new Mooney images, all in random order. Now, the 
task was to remember (y/n) whether they had seen the Mooney image 
already in part one (familiarity) and to remember the solution (another 
open response). After this unannounced memory part, participants filled 
out four questionnaires: two about different dimensions of trait curios-
ity, one about autism traits (AQ-short; Hoekstra et al., 2011), and the 
Need for Closure scale (Roets & Van Hiel, 2011). The latter measures a 
tendency to want cognitive closure and avoid ambiguity or confusion, 
which we reasoned may influence one’s response to ambiguous Mooney 
images. The AQ-short measures (subclinical) autism-like traits, which 
some studies suggest may alter Mooney perception (Król & Król, 2019; 
Loth, Gómez, & Happé, 2010). The Five-Dimensional Curiosity Scale 
Revised (5DCR; Kashdan, Disabato, Goodman, & McKnight, 2020) is a 
validated questionnaire assessing five dimensions of curiosity (joyous 
exploration, deprivation sensitivity, stress tolerance, thrill-seeking, and 
social curiosity). However, it does not include a perceptual curiosity 
dimension, so we included the 10 items of the Perceptual Curiosity Scale 
(PCS; Litman, Collins, & Spielberger, 2005). Although trait curiosity 
might be a domain-general concept, we suspected trait perceptual cu-
riosity would be more related to the type of state curiosity induced by 
our Mooney task. 
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2.4. Analysis 

The open responses (first guesses pre-reveal and solution memory 
responses in the second phase) were corrected programmatically with a 
fuzzy matching algorithm comparing responses with pre-generated lists 
of valid responses, as described in Van de Cruys, Vanmarcke, Van de Put, 
and Wagemans (2018), accounting for variations in spelling or typos. 
Our sampling of 80 images per participant (out of the set of 203) gave us 
an average of 110 observations per image. One participant had no 
variation at all on the curiosity measure, and was therefore excluded 
from further analyses. All analyses except for the participant-based ones 
(relating to the questionnaires) were done on raw scale scores as well as 
(participant-based) z-transformed ones to account for individual dif-
ferences in the use of the scales. Unless noted otherwise, all correlations 
are Pearson correlations on the z-transformed scores. We clearly indicate 
when analyses are post hoc, so corrected alpha-values apply. In terms of 
statistical tests, we used Generalized Estimating Equations (McNeish, 
Stapleton, & Silverman, 2016) as implemented in the Python Statsmo-
dels library (Seabold & Perktold, 2010) to correct for clustering of data 
points within participants. These have the advantage of making a 
smaller number of assumptions than hierarchical (generalized) linear 
models and the resulting beta’s are interpreted identically to conven-
tional (logistic) regression as the slope connecting the predictor to the 
dependent variable. 

The semantic entropy measure was computed as follows. Each guess 
on a trial (pre-reveal guesses only) is compared to the list of used labels. 
If the guess is not in the list of labels (or if the list is still empty), a new 
possible label is created for this image, to which all other guesses for this 
image (by other participants) are compared (always using fuzzy- 
matching, see Methods). Frequencies of all labels in the list are used 
to compute proportions of the label in the total number of guesses (i.e. 
summed up frequencies of all the different guesses for a given image). 
Note that empty responses are also tallied towards the total. These 
‘probabilities’ were then used to compute the information entropy for an 
image as Shannon defined it: 

H(X) = −
∑

P(xi)log(P(xi) )

where xi is the i-th guess in the list of used guesses. In this way, we attain 
a crowdsourced subjective uncertainty of an image. Note that this 

analysis only uses the raw guesses and totally disregards the ground 
truth for the image (guess accuracy). 

In addition to the semantic entropy measure, we also assessed several 
measures of perceptual entropy calculated directly from the Mooney and 
grayscale images to investigate whether any low-level image statistics 
influence curiosity and aha ratings or memory accuracy. We included 
five measures in total – pixel entropy, edge density, PHOG complexity, 
anisotropy, and self-similarity – which have been found to relate to 
subjective ratings of complexity, interest, and pleasure (Grebenkina, 
Brachmann, Bertamini, Kaduhm, & Redies, 2018; Lyssenko, Redies, & 
Hayn-Leichsenring, 2016; Van Geert & Wagemans, 2020). We refer to 
the supplementary materials for a brief explanation of how these mea-
sures are computed. We also calculated the structural similarity between 
the Mooney image and its grayscale solution as a measure of the physical 
match between the grayscale image and its Mooney counterpart. We 
hypothesized that the strength of the match would be related to the 
obviousness of the Mooney’s solution, thus perhaps playing a role in the 
accuracy of the initial recognition of the Mooney or the strength of the 
aha experience. Structural similarity was calculated using the “ssim” 
function in Matlab (Wang, Bovik, Sheikh, & Simoncelli, 2004). 

All data and code for running the experiments, for deriving the 
image-based and semantic entropy measures, and for all analyses and 
plots, are available at osf.io/hm2kb. At the same location, our Mooney 
stimulus set is made available for future studies, as well as an interactive 
data explorer. The latter allows the reader to experience the Mooney 
images and their resolution across the dimensions we measured. Infor-
mation on inter-rater reliability can be found in the supplementary 
materials. 

3. Results 

3.1. Semantic entropy 

Our first hypothesis concerned the effect of semantic entropy on 
curiosity and aha experience, tested in an analysis that disregards the 
accuracy of guesses. Indeed, most people made a guess on most trials (on 
average 76% of trials), but mean accuracy was only 0.22 (in the pre- 
reveal part). We created the semantic entropy measure using the num-
ber of different guesses and their frequency (across participants) for a 
given image (see Analysis). It is a proxy for the entropy of the subjective 

Fig. 2. Flow chart of the procedure of part 1, with our measurements in rectangles and the corresponding theoretical concepts (and equations) in lozenges. The 
probability distribution plots represent semantic entropy before (Ht) and after (Ht+1) the solution has been shown (Prob. = Probability; E = Expected). 
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probability distribution over the hypothesis space for an image, possibly 
capturing the guesses that may be implicit in many participants but were 
not given (or even not conscious). We hypothesized that such an entropy 
measure would be proportional to curiosity, but it is usually hard to 
compute for a particular individual being confronted with a non- 
artificial stimulus (see also, Holm, 2017; Nicki, 1970). Of course, since 
our probabilities are based on the ‘votes’ from the whole group, our 
crowdsourced entropy measure should not be considered a direct mea-
sure of subjective entropy either, but rather an approximation of it. 
Related to that, the correlation between the semantic entropy of an 
image and the average confidence is only − 0.28 (p < .001). This shows 
these are different measures of uncertainty: for one guess versus a po-
tential distribution. Indeed medium confidence may mean one sees 
different partial solutions (with similar confidence in each guess) or sees 
one solution for which the support in the image is not high. 

We found that semantic entropy correlated substantially with curi-
osity (r = 0.38, p < .001) and aha (r = 0.55, p < .001; Fig. 3), similar to 
confidence. However, confidence correlates more with curiosity (r =
0.78, p < .001) than with aha (r = 0.57, p < .001), while the reverse is 
true for semantic entropy (test of correlation difference: z = − 3.38, p =
.001; see Diedenhofen & Musch, 2015). This is consistent with aha being 
proportional to actual information gain, while curiosity tracks only an 
imperfect expectation of information gain. Indeed, (semantic) entropy 
represents a potential for learning progress, in that a highly spread out 
distribution of hypotheses (high entropy) will, after reveal, collapse into 
a distribution with concentrated probability mass on one particular 
hypothesis (i.e., posterior entropy is necessarily zero). It is this shift in 
distribution that represents information gain and that we have identified 
as a determinant of the strength of the positive aha experience. 

In addition, the potential of multiple plausible hypotheses for a 
Mooney suggests it is an engaging image (a measure of its ‘poly-inter-
pretability’), so semantic entropy may be a better basis to select proto-
typical Mooney images. It might be even better than average aha itself, 
because of the large individual differences in aha (see supplementary 
materials). 

Notably, this measure of uncertainty at the ‘meaningful object 
candidate’ level turns out to have no correlations whatsoever with the 

low-level image complexity measures (all correlations lower than 0.05). 
Although it is sometimes implied that low-level measures capture the 
general complexity of an image, our findings show these measures really 
capture different things. The image cues that give rise to (multiple) in-
terpretations seem to still escape us. 

3.2. Curiosity, confidence, and aha 

Next, we looked at the relation between confidence or certainty 
about the guess and curiosity. We find no evidence for a U-shaped 
relation as often reported in studies using trivia questions (verified with 
the “two lines” procedure; Simonsohn, 2018), but rather a significant 
monotonously decreasing relation, with people experiencing more cu-
riosity the less confident they were about their guess (r = − 0.33; p <
.001; see Fig. 4). We also looked at what people are curious about: “the 
contents of the perceived information gap, or simply the confirmation of 
whether or not their best guesses are correct” (Wade & Kidd, 2019). 
Clearly, people were also, in fact even more, curious when they did not 
make a guess (t(8409.55) = 16.91; p < .001; see also supplementary fig. 
1). As a sanity check, we also could confirm that the more confident 
people were about their guess, the more likely they were indeed accu-
rate (r = 0.5; p < .001). 

We could also confirm that people’s curiosity (pre-reveal) predicts 
the strength of their (post-reveal) aha-experience (r = 0.28; p < .001, 
Fig. 5). Assuming curiosity is indeed a measure of expected learning 
gain, while the aha experience marks the actual gains one has made, it 
seems that, through their curiosity, people indeed have some (imperfect) 
sense of future learning progress. This was even more obvious on a per- 
image analysis: images that on average elicited higher curiosity were 
also the ones that tended to elicit higher aha experiences (r = 0.68; p <
.001, Fig. 5). Note that these findings are modulated by accuracy, in the 
sense that, quite logically, accurate, high confidence trials give little or 
no curiosity or aha. Indeed, with regard to the relation between confi-
dence and aha experience, we can see that only for accurate guesses, aha 
really goes down with confidence (for incorrect guesses: r = − 0.02, p =
.008; for correct guesses: r = − 0.31; p < .001; see Fig. 6), meaning that if 
you were highly confident of your guess and it turned out to be right, you 

Fig. 3. Average aha plotted as a function of the semantic entropy of a Mooney 
image. Dots are individual images, the solid line is the linear best fit. The 
shaded area is a 95% confidence interval for the regression. 

Fig. 4. Standardized curiosity rating as a function of standardized confidence 
rating. Dots are individual trials, the solid line is the linear best fit. The shaded 
area (too small to see here) is a 95% confidence interval for the regression. 
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have decreased aha. In those cases, the solution was likely too obvious, 
and you did not gain any new knowledge. If your guess was inaccurate, 
your confidence about it does not matter much in the aha experience, i. 
e., if you were highly confident of an inaccurate guess, there is no cost or 
benefit in strength of aha. 

3.3. Curiosity, aha, and memory 

Our next question is whether people indeed have better memory for 
images that induced greater curiosity and aha. In general, accuracy 
increased on average by 35 percentage points in the memory phase, 
compared to the pre-reveal phase (mean accuracy from 0.22 to 0.57). 
We found indeed that aha is predictive of better solution memory 

accuracy (r = 0.12; p < .001; see Fig. 7) and that this is also the case, but 
less so, for curiosity (r = 0.04; p < .01). Note that for this analysis, we 
obviously removed the trials of the images for which participants were 
already accurate the first time around. We confirmed this with a model 
including every measure from the first phase (accuracy, confidence, 
curiosity, and aha) as a predictor for dependent variable solution 
memory. While the main effects of aha (B = 0.25; z = 11.66; p < .001), 
confidence (B = 0.17; z = 8.82; p < .001), accuracy (B = 1.64; z = 31.23; 
p < .001), and the interaction between aha and accuracy (B = − 0.34; z 

Fig. 5. Standardized aha rating as a function of standardized curiosity rating (left panel). Dots are individual trials, the solid line is the linear best fit. The shaded area 
is a 95% confidence interval for the regression. In the right panel, each dot is an image, and average curiosity of this image is plotted by its average aha rating. 

Fig. 6. Standardized aha rating as a function of standardized confidence rating 
(left). Dots are individual trials, the solid line is the linear best fit. The shaded 
area is a 95% confidence interval for the regression. Data is plotted separately 
for accurate (red) and inaccurate trials (blue). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. The likelihood of remembering an image correctly (given the Mooney 
version in part two) as a function of standardized aha rating (from part one). 
Dots are individual trials, the solid line is the logistic fit. The shaded area is a 
95% confidence interval for the regression. 
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= − 6.22; p < .001) were significant, the effect of curiosity was not 
significant (B = 0.03; z = 1.77; p = .07). However, when aha was 
dropped from the model, the effect of curiosity did become significant 
(B = 0.07; z = 4.33; p < .001). Finally, the influence of aha on solution 
memory was confirmed using per-image data, again only including 
incorrect trials from Part 1, showing that those images that were (on 
average) better remembered, were the ones that elicited greater aha 
experiences in part 1 (r = 0.31; p < .001). Finally, participants with 
higher average aha scores (across images) tended to also have better 
memory, though this correlation was smaller (r = 0.13; p = .03). It 
suggests that most of the effect of aha on memory takes place within 
individuals, and between images, as one might expect. We will not 
report the findings on Mooney familiarity (old vs. new Mooney) memory 
in detail as correlations with curiosity and aha were systematically 
smaller and/or insignificant, suggesting particularly the solution mem-
ory is influenced by our predictors (these results can be found online at 
osf.io/hm2kb). 

In a post hoc analysis, we added a computed variable representing 
the deviation of aha rating compared to a local baseline (moving win-
dow average of aha ratings in the previous 10 trials). If we control for 
aha, confidence and curiosity, only this aha deviation measure remains 
significant (B = 0.1; z = 4.07; p < .001) with regard to predicting so-
lution memory. It seems then that if aha is a measure of intrinsic reward 
associated with the relief of curiosity (with information gain), particu-
larly the (information) reward prediction error compared to the 
currently expected information reward (which seems to be continuously 
updated) influences memory (see also Marvin & Shohamy, 2016). 

In sum, our findings so far suggest that the greater their aha expe-
rience, the more strongly people encoded the image. The Mooney im-
ages that elicit a strong aha may be the “best” in terms of information 
gain, giving us the largest perceptual shift and the best solution memory. 
However, the impact of curiosity on memory was not very large. In fact, 
a mediation analysis (Imai, Keele, & Tingley, 2010) revealed that the 
effect of curiosity on solution memory is significantly mediated by aha 
experience (causal mediation effect: B = 0.01, p < .001) such that the 
direct effect of curiosity on memory is negligible (B = − 0.003, p = .29). 
This suggests that previous studies finding an effect of curiosity level of 
items on memory for those items might have missed this mediation, if 
they did not measure the experience (of appreciation or aha) upon 
revealing the missing information. Still, our study also confirms curi-
osity predicts this appreciation, so arguably curiosity is a good measure 
of how cognitively engaged one is or will be with the item, which in turn 
predicts memory (cf. the elaboration effect of memory; Craik & Tulving, 
1975). Related to this, if we only consider inaccurate first guesses, we 
find higher strengths of aha experience when one has actually made a 
guess (t(9221.23) = − 6.04, p < .001), suggesting that more engagement, 
in addition to expectation violation (wrong guess) has considerable in-
fluence on aha (and so memory). However, contrary to Brod and 
Breitwieser (2019) who report that making a prediction increases curi-
osity, we did not find a positive effect of engagement (making a guess) 
on curiosity (cf. supra). In fact, we find the opposite effect: people are 
more curious when they do not make a prediction. This could be due to 
differences in baseline engagement (interest) in the stimulus materials 
(numerical trivia facts in Brod and Breitwieser) or, as highlighted in the 
introduction, with a strong expectation of solvability (uncertainty 
reduction) because solutions were always provided. 

3.4. State and trait curiosity 

We were also interested in whether a person’s average state curiosity 
as measured in our task is correlated with a person’s trait curiosity as 
measured by validated questionnaires on trait curiosity. We indeed find 
that one’s average state curiosity is positively predictive of one’s score 
on the 5DCR, but only very mildly so (r = 0.13; p = .03). Surprisingly, 
this correlation seems to be driven largely by a relation with the social 
curiosity subscales, as the correlations with the other subscales were all 

insignificant (overt social curiosity r = 0.177; p = .003; covert social 
curiosity r = 0.14; p = .016; all other subscales: p > .15). However, also 
the separate trait perceptual curiosity scale correlated significantly, 
though again very mildly, with average state curiosity (r = 0.15, p =
.01), as expected for a perceptual task like ours. Given those small 
correlations, we can conclude that our form of induced state curiosity is 
not captured well by the trait curiosity measures. Interestingly, partic-
ipants that had higher average curiosity (or aha) did not have a higher 
memory accuracy (r = − 0.003, p = .91) which implies that the effects of 
curiosity or aha on memory take place within persons, as the informa-
tion gain account would predict. Finally, neither the Need for Closure 
Scale nor the Autism Quotient questionnaire (AQ-28) correlated with 
task curiosity. 

3.5. The contribution of low-level image statistics 

Finally, we explored the effect of those low-level image complexity 
measures on the strength of curiosity, aha, and in (memory) accuracy. 
We computed multiple measures of image complexity (see Analysis) for 
both the Mooney image and the corresponding grayscale image. In 
addition, we computed the structural similarity between the Mooney 
image and its corresponding grayscale image, which we expected would 
be able to capture part of the ease of resolution or the obviousness of the 
solution in the Mooney. Structural similarity had no effect on first guess 
accuracy (r = − 0.02; p = .83), but it was related to post-reveal solution 
memory (r = 0.19, p = .007; first part inaccurate guesses only; Fig. 8), 
suggesting that it is not so much a measure of obviousness of meaningful 
structure, but that it may only help to make similar features become 
actual cues after you have already seen the solution. However, structural 
similarity was not correlated with aha experience (r = 0.06, p = .39), nor 
with curiosity or confidence, implying that it does not capture the pro-
cessing characteristics that determine aha experience. Top-down in-
fluences (not captured by low-level measures such as structural 
similarity) may have a more important role here. With regard to our 
complexity measures, our analysis should be considered exploratory. 
Although relations have been found between preference and interest and 
various computed complexity measures for (abstract) artworks (Lys-
senko et al., 2016) or arrays of objects (Van Geert & Wagemans, 2020), 
our analyses did not reveal (Bonferroni-corrected) significant 

Fig. 8. Average memory accuracy plotted as a function of the structural simi-
larity between Mooney image and grayscale solution (source) image. Dots are 
individual images, the solid line is the linear best fit. The shaded area is a 95% 
confidence interval for the regression. Data is plotted separately for accurate 
(red) and inaccurate trials (blue). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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correlations between curiosity or aha and any of our complexity mea-
sures. The only correlations that survived corrections were between 
complexity measures (primarily: anisotropy of the Mooney, anisotropy 
of the grayscale, edge entropy of the grayscale), and familiarity memory 
(old vs. new Mooney), such that familiarity memory was more accurate 
for less complex images. Interestingly, measures concerned both the 
Mooney and grayscale versions, meaning that Mooney familiarity ac-
curacy varied with characteristics of the corresponding solution. Cor-
relations with solution memory accuracy pointed in the same direction 
but did not survive our strict correction. In sum, low-level image sta-
tistics explain little of the variance in aha, curiosity, or memory. 

4. Discussion 

The key contributions of our study can be summed up in five points. 
First, we found clear evidence that curiosity (relief) tracks semantic 
information gain, consistent with current theories of curiosity based on 
expected learning progress. Second, our analyses indicate that the effect 
of curiosity on (incidental) solution memory is mediated by aha or cu-
riosity relief, which may imply that curiosity facilitates memory, but 
only if the relief (actual gain) aligns with or exceeds curiosity (expected 
gain). Third, we show that the strength of ‘state’ perceptual curiosity 
reflects a domain-general individual trait curiosity only to a very limited 
extent, as measured by established curiosity questionnaires. Fourth, 
low-level image-based statistics do not explain much of the variance in 
curiosity, aha, memory, or semantic interpretability (semantic entropy). 
This suggests that these image statistics have limited importance in 
understanding complex evaluations such as curiosity and (aesthetic) 
appreciation, which has been likened to the aha experience (Muth & 
Carbon, 2013). Fifth and finally, we provide a new set of stimuli for 
research on perception and curiosity, with reference data on multiple 
dimensions (most notably semantic entropy) that can be used in future 
studies into the neural or psychophysiological correlates of curiosity and 
curiosity relief. 

Any experimental ‘task’ on curiosity will technically be a bit 
contrived because a ‘task’ is imposed, while curiosity provides a sense of 
what ‘tasks’ to engage in to begin with (but see, Geana, Wilson, Daw, & 
Cohen, 2016). This implies an unavoidable degree of motivational im-
purity in studies on curiosity or intrinsic motivation, since “any in-
struction intended to entice subjects to work on a task carries with it an 
implication that the experimenter will be pleased if the subject does so 
and displeased if the subject does not” (Walker, 1981). For this reason, 
we started out with intrinsically engaging visual stimuli, that may be 
more suited for studying curiosity than the oft-used trivia questions. 
Two earlier studies used image materials but in blurred (low-pass 
filtered) versions, instead of the thresholded (Mooney) images that we 
used. Nicki (1970) found that medium blur leads to maximum uncer-
tainty about object identity, using guesses and confidence ratings of one 
individual. Still, consistent with our findings, he further reports that 
curiosity, as measured by the preference to see the unblurred object 
(rather than an unrelated but comparable clear image) after being pre-
sented with the blurred object, follows an inverted U-shaped function of 
blurredness. Jepma, Verdonschot, van Steenbergen, Rombouts, and 
Nieuwenhuis (2012) similarly used images with an intermediate degree 
of blur, but did not make trial by trial measurements of curiosity (or 
relief). They did report that resolving blurred images led to improved 
incidental memory, consistent with our findings. 

Van Lieshout et al. (2018) studied curiosity in a lottery task, in which 
participants were confronted with a vase of marbles of two different 
colors and in different proportions, to manipulate uncertainty. Partici-
pants could win monetary rewards based on the outcome of the draw 
from the vase, and their curiosity about the outcome was measured 
either through self-report or through their willingness to wait to see the 
outcome. As in the current study, their results showed that curiosity was 
a monotonically increasing function of uncertainty, computed as the 
outcome uncertainty for a given vase (as well as independently varied 

reward probability). Note that this is a purely passive observation task 
because participants could not influence outcomes in any way. This is 
slightly different from our task, given that it was possible to influence 
outcomes using eye movements and self-generating possible solutions 
(at least for the time the Mooney image was on-screen). If anything this 
should increase curiosity. 

Indeed, the availability of actions to gather more information (i.e., 
exploration) is crucial, because, as indicated in the introduction, it 
heightens the sense of (expected) reducibility of uncertainty that we 
identified as crucial in curiosity. In line with the recent predictive pro-
cessing (also called active inference) accounts of the brain (Clark, 2015; 
Hohwy, 2013), this implies a proactive stance of the brain (agent) not 
only inferring the hidden causes of the current input (e.g. the object that 
‘generated’ the Mooney image) but also predicting the uncertainty that 
is to come, as well as whether that uncertainty is expected to be 
resolvable. The latter is called epistemic value (or information gain) and 
is evaluated in order to select future actions so as to minimize (expected) 
uncertainty (Friston et al., 2017; Schwartenbeck, Fitzgerald, Dolan, & 
Friston, 2013; Seth, Millidge, Buckley, & Tschantz, 2020). Without 
going into the computational technicalities of this account of curiosity, it 
brings two important corrections on classical theories of curiosity 
(Berlyne, 1966; Loewenstein, 1994). The latter were drawing on clas-
sical information theory centered on the idea of passive receivers, while 
active inference emphasizes the active contributions of agents. First, this 
means that it is not some unspecific or objective uncertainty that matters 
for curiosity but rather the subjective uncertainty, which is always 
relative to a particular model. Consequently, expected learning progress 
is not only based on current sensory evidence but also on prior knowl-
edge formed by similar experiences (Wade & Kidd, 2019). As van 
Lieshout et al. (2018) remark this may explain why studies based on 
trivia questions found moderate uncertainty to be most curiosity- 
inducing: Participants might just not have had mental models for 
many of the topics of the questions (so no interest). Second, the active 
inference account makes apparent that curiosity is not just a function of 
perception but also of the potential for action. It is captured by expec-
tations on the resolvability of uncertainty, and it is another reason why 
the maxim of moderate uncertainty may not hold. Future studies using 
our Mooney stimuli could systematically address whether the possibility 
for action or so-called ‘epistemic foraging’ (exploration to learn about 
the structure of sensory inputs, see e.g., Clark, 2018), modulates curi-
osity. For example, participants could actively control partial revealing 
of information, by gradually blending in the solution with the Mooney 
image. Another limitation of the current study is that we did not ask 
participants to explicitly judge the expected solvability (reducibility of 
the uncertainty) of the Mooney images, because it might have influenced 
the curiosity measure. Future studies could select a subset of high 
curiosity-inducing and low curiosity-inducing images to verify whether 
these indeed differ reliably in the extent to which people estimate that 
they would be able to solve them given unlimited viewing time. Given 
that we eventually provided the solution for all of the images, partici-
pants might have judged reducibility to be similar for all images. 
However, given that information gain explains only part of the variance 
in curiosity, it is conceivable that differences in reducibility did play a 
role here. 

Let us now turn to the interpretation of the aha-related results. In 
fact, the aha experience is often connected to aesthetic appreciation and 
preference. For example, Muth and Carbon (2013) found that having the 
insight or Aha-Erlebnis for a Mooney image increases subsequent liking 
of the image. And indeed, the literature on preference or (aesthetic) 
appreciation and curiosity or interest is highly overlapping, both in 
theoretical ideas (cf. inverted U-curve) and empirical measurements (e. 
g., preference is used to measure both curiosity and appreciation). This 
has historically always been the case, and for good reasons. Our 
conceptualization in terms of expected (curiosity) and actual (aha or 
appreciation) information gain solidifies this connection. Hence, we 
discuss aha as a form of intrinsic reward causing the appreciation of 
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visual images, while acknowledging that the aha phenomenon may only 
explain part of what makes us like images (aesthetically). 

The inventive early work on appreciation or liking focused on geo-
metric patterns for which objective entropy (complexity) could still be 
quantified (e.g., Terwilliger, 1963). Consistent with the reasoning on 
learning progress, the results show a clear influence of learning and a 
preference for patterns that deviate systematically from what one is used 
to (and has presumably learned already). The objective entropy that is 
most pleasurable might indeed be a moving target because it is subjec-
tive entropy that counts. Interestingly, Terwilliger (1963) already noted 
that 1) even for these ‘simple’ patterns, there are multiple ways to 
quantify ‘objective’ complexity depending on subjective choice of the 
coding scheme (for an instructive formal treatment, see Feldman, 2004), 
and, 2) that proper comparisons were clouded by familiarity and 
meaning emerging to different degrees along the entropy continuum, 
sometimes in idiosyncratic ways. More recent research has tried to link 
objective low-level image entropy of actual artworks or more ecological 
arrays of objects with appreciation or interest for these stimuli but has 
all-in-all led to only modest correlations (Graham, 2019; Lyssenko et al., 
2016; Van Geert & Wagemans, 2020), consistent with our own findings. 
Although our stimuli are obviously not actual artworks, the different 
low-level entropy measures indeed explain very little variance in 
meaning and appreciation (or curiosity). Maybe this should not surprise 
us, given that the perceptual features that make something a potential 
bearer of meaning may require integration on a more global scale, 
something that is not adequately captured by the low-level character-
istics we used. Furthermore, the very task we used (identifying the 
content of images) may have biased participants to the semantic level, 
thereby curtailing the effect of lower-level factors on aha (and curiosity). 
That said, there is evidence for a default semantics-first processing of 
(visual) stimuli (Peterson, 1994; Pinna, 2010), suggesting that our re-
sults may generalize beyond our specific task or materials. 

Indeed, in contrast to pixel entropy, semantic entropy of images did 
strongly predict appreciation, which matches with findings of semantic 
instability, ambiguity, or indeterminacy being conducive to (aesthetic) 
appreciation (Ishai, Fairhall, & Pepperell, 2007; Muth & Carbon, 2016; 
Muth, Raab, & Carbon, 2016; Nicki, Forestell, & Short, 1979; Pepperell, 
2006; Zeki, 2004). However, because we measured appreciation as the 
aha experience at a time when the stimulus is already perfectly disam-
biguated, our findings throw new light on the reason why semantically 
unstable or indeterminate images are often liked more. This is, arguably, 
the case because these poly-interpretable, indeterminate images have a 
greater potential for information gain. Indeed, we have attributed the 
strong aha to large shifts in the distribution of beliefs (in the Bayesian 
sense) technically known as information gain, relative entropy, or 
Kullback–Leibler divergence (see also Itti & Baldi, 2009; Tanner & Itti, 
2017). Liking a stimulus is a function not of the stimulus per se, but of 
the subjective process of going from a state of high uncertainty to a state 
of lower uncertainty (Van de Cruys, 2017; Van de Cruys & Wagemans, 
2011). 

That said, information gain at the level of semantic entropy clearly 
does not capture all factors involved in the aha experience. Specifically, 
it does not fully account for the quality of the end solution: The support 
in the image for the particular solution. Knowing the solution com-
presses our mental representation of the Mooney image: It becomes 
predictable so you know which features, patches, or edges in the 
Mooney image are relevant, which belong together and which are 
irrelevant (e.g. background, shadows, …). If all cues in an image line up, 
it is unlikely to be created by a random process, increasing the “eureka” 
feeling (Feldman, 2004). This is an additional way in which we reduce 
entropy or make learning progress here better (but equivalently) 
described as predictive or compression progress (Schmidhuber, 2009). 
Images vary on this aspect as well, so that the sensory ‘evidence’ in the 
image will be explained better or worse by the hidden object. One might 
conjecture that, if there are definite image cues that lend themselves to 
multiple interpretations (cf. high semantic entropy), that also implies 

these are well-explained by the actual solution, i.e. can serve well as 
evidence or ‘support’ for it. However, whether this form of compression 
gain can be a source of the positive aha experience would need to be 
tested explicitly (e.g. using the paradigm by Król & Król, 2018). 

Finally, our findings concerning the modest relations of average state 
curiosity to questionnaires about trait curiosity, indicate that the latter 
clearly need to be validated more thoroughly based on actual 
experimentally-induced curiosity (or exploration), instead of merely 
using other questionnaires measuring similar constructs. Only then will 
we be able to establish whether curiosity is a domain-general trait. Note 
as well that the information gain account of curiosity casts serious 
doubts on whether a domain-general factor would account for much of 
the variability. The importance of a variable sense of curiosity sensitive 
to actual good learning opportunities is mostly apparent within in-
dividuals (as our results confirm). 

Along the same lines, our findings suggest hacking our sense of cu-
riosity to improve memory (e.g., in education), would only work if cu-
riosity relief (aha) is boosted accordingly. Marvin and Shohamy (2016) 
measured both curiosity about and satisfaction with the answers to 
different trivia questions and computed the information prediction error 
as the discrepancy between the anticipated (the curiosity rating) versus 
the received information reward (the satisfaction rating). They found 
that this information prediction error predicted subsequent likelihood of 
remembering the answers. We could not confirm this in our data (using 
the difference between curiosity and aha, instead of satisfaction). Mar-
vin and Shohamy also found that curiosity as such predicts memory too, 
but do not report the relation of satisfaction with memory separately, 
nor whether curiosity’s effects on memory could be completely medi-
ated by satisfaction, as we found for aha. However, analogous to Marvin 
and Shohamy’s (2016) information prediction error findings, our results 
seemed to show that memory was a function of the deviation of aha 
(information reward) from a recent (running average) baseline of aha. 
This suggests that people build up an expected information gain from 
their experienced gains in the past trials and that the ‘information gain 
prediction error’ of the current trial predicts their memory (more than 
‘raw’ aha). 

While we hypothesize that information gain is a key factor in the 
memory improvements that we see with increasing curiosity and aha, 
generic processes may mediate this memory facilitation. We could not 
confirm that engagement as measured by whether participants made a 
guess or not had an effect on memory, but more granular measures of 
engagement (such as eye movement patterns) may reveal such an effect. 
Given that specifically aha strength is related to memory, it is telling that 
the aha usually appears when presented with the original Mooney image 
again and it ‘clicks’ after having seen the solution. This may point to a 
role for the well-established generation effect (Slamecka & Graf, 1978): 
the finding that materials that you yourself inferred or (re)constructed 
are better retained in memory. 

In conclusion, we seem to be curious about and like experiences 
which allow the greatest information gain, or, equivalently, have the 
most potential to influence our model of the given perceptual inputs. 
Causal connections must remain tentative, because our study is purely 
correlational, even though semantic entropy and curiosity precede aha 
by design. Our findings also shed new light on the interplay between 
curiosity, information gain, aha, and memory, showing the usefulness of 
our stimulus set (and the collected norming data) for this field. 
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Appendix A. Supplementary data 

Our raw data, stimuli, and experiment/analysis code can be found at 
https://osf.io/hm2kb/ 
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