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Empirical Article

Perception is sometimes described as “controlled hal-
lucination” (e.g., Horn, 1980) to emphasize the con-
structive, generative contribution of the perceptual 
brain, not just passively receiving inputs but proactively 
synthesizing what may have caused those sensory 
inputs. This idea is often formalized with a Bayesian 
account of perception (Lee & Mumford, 2003), in which 
priors or predictions are combined with inputs, to infer 
their hidden causes. In experimental paradigms, the 
brain’s active contribution is often masked because of 
stimulus randomization, which reduces expectations, 
or because stimuli are used that are readily identified 
seemingly without the need for top-down processes. 
The strategy that researchers apply to expose this con-
tribution often comes down to giving the visual system 
a hard time, by using ambiguous, noisy, or distorted 
stimuli. Mooney or two-tone images (Mooney, 1957), 
made by low-pass filtering and thresholding grayscale 
photographs, are one such type of stimulus that has been 
repeatedly used to investigate top-down influences in 
perception (Fig. 1). For such a stimulus it is immediately 

clear that it helps greatly if we have a specific model of 
the source image on the basis of which it is generated. 
Those models are often (implicitly) learned, in some 
cases through very little experience, as is evidenced by 
the Mooney images. As soon as we have seen the “tem-
plate” (grayscale solution image) once, we automati-
cally disambiguate the two-tone version, often with a 
radical shift in experience from fragmented patches to 
coherent percept. In the most compelling cases, we will 
have great difficulties to return to the naïve, disorga-
nized percept. Several studies have measured the neural 
correlates of the influence that top-down prior knowl-
edge has on the encoding of (resolved) Mooney images 
(Dolan et al., 1997; Gorlin et al., 2012; Grutzner et al., 
2010; Hsieh, Vul, & Kanwisher, 2010), and have shown 
that such effects occur from very early on in the visual 
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Abstract
An amorphous collection of black and white patches (so-called Mooney images) can be perceived dramatically 
differently before versus after exposure to the natural source image. Prior experience causes the patches to (re)organize 
and fit together in a meaningful whole. Given recent hypotheses on a weaker role of priors in perception in individuals 
with autism spectrum disorders (ASD), we looked at improvements in recognition accuracy for Mooney images, before 
and after exposure to their source image, in typically developing (TD) individuals varying in ASD-like traits, and in 
a clinical group of adolescents with ASD (versus matched TD sample). We found typical prior-based performance 
improvements irrespective of ASD-like traits or ASD diagnosis, suggesting that the fast formation and application of 
specific priors is preserved in ASD. Together with earlier studies reporting intact use of other types of perceptual 
priors, these findings narrow down the candidate Bayesian accounts that are plausible for ASD.
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processing stream (Aru, Rutiku, Wibral, Singer, & Melloni, 
2016; Mayer, Schwiedrzik, Wibral, Singer, & Melloni, 
2016; Samaha, Boutonnet, & Lupyan, 2016). Recently 
there has been an increased interest in the individual 
differences in the ability to resolve these images (Teufel 
et al., 2015; Verhallen et al., 2014), suggesting individual 
variation in top-down strength in perception.

Autism spectrum conditions or disorders (ASD) refers 
to a cluster of early-onset neurodevelopmental condi-
tions characterized by social-communicative deficits 
and restricted, repetitive behavior, and interests (Ameri-
can Psychiatric Association, 2013). Given the wide-
spread atypicalities in cognition and perception, in 
addition to social problems, in these individuals, several 
researchers have proposed that general information 
processing alterations could be at the basis of ASD. At 
the core of many of these proposals is an imbalance 
between bottom-up and top-down information process-
ing. Given the interplay between priors and likelihoods, 
Bayesian inference is a natural way to articulate those 
views. However, their precursors are older and can be 
found in the weak central coherence (WCC; Happé & 
Frith, 2006) and the enhanced perceptual functioning 
(EPF; Mottron, Dawson, Soulières, Hubert, & Burack, 
2006) accounts. The WCC assumes a weaker role for 
gestalts, gist, or meaning in perception and cognition 
in ASD, suggesting that the perceiver’s contribution in 
abstracting regularities from inputs is reduced, or at 
least is not applied spontaneously. In perception, this 
is usually tested by measuring a local versus global bias 
in processing a given stimulus (e.g., hierarchical Navon 
stimuli), but without an explicit top-down component. 
EPF, on the other hand, primarily argues for stronger 
local, low-level perceptual processing in ASD, but also 
suggests that “higher-order processing is optional in 
autism and mandatory in non-autistics” (Mottron et al., 
2006, p. 34). Evidence for this primarily comes from 
categorization (Soulières, Mottron, Giguère, & Larochelle, 
2011; Soulières, Mottron, Saumier, & Larochelle, 2007) 

and global perception tasks (Van der Hallen, Evers, 
Brewaeys, Van den Noortgate, & Wagemans, 2015), 
where it is clear that individuals with ASD are very well 
able to do the tasks, but do them slower or with more 
effort.

In Bayesian terms the principles of EPF and WCC 
could be described as “weak” or uninformative priors, 
leading to perceptual inference that is much more 
determined by the inputs (e.g., more “veridical” or more 
detailed, i.e., “enhanced”) instead of by prior knowl-
edge or internal constraints (Pellicano & Burr, 2012). 
The assumption is either that people with ASD do not 
learn proper (informative) priors or that something goes 
awry when they need to apply these priors to particular 
sensory inputs. In any case, it is formalized by positing 
broader prior distributions (i.e., higher uncertainty 
about prior expectations), which will bias percepts to 
a lesser extent. Although the true value of a Bayesian 
approach (over EPF or WCC) will become clear only 
with studies that explicitly model perceptual inference 
under uncertainty, connecting the broader Bayesian 
literature with perception in ASD is already affording 
new paradigms and interesting distinctions for the study 
of ASD. As one example, one can roughly distinguish 
two types of priors: structural priors and contextual 
priors (Seriès & Seitz, 2013). Common examples of 
structural priors include the expectation that light 
comes from above or that convex shapes are likely to 
be foreground objects (instead of background). Such 
priors are either innate or implicitly learned through 
early and ample experience with the statistics of the 
natural environment. They are therefore also very 
widely applicable to any (even novel) visual input and 
are most likely encoded in early perceptual cortices. 
Most illusions also rely on structural priors, and show 
that such priors are often not very malleable. Despite 
findings of reduced susceptibility to (some) illusions 
(Mitchell, Mottron, Soulieres, & Ropar, 2010), several 
recent studies suggest that structural priors are actually 

Fig. 1.  Mooney or two-tone image (left) and its grayscale source image or “template” (right).
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intact in ASD (Croydon, Karaminis, Neil, Burr, & Pellicano, 
2017; Manning, Neil, Karaminis, & Pellicano, 2015; Spanò, 
Peterson, Nadel, Rhoads, & Edgin, 2015).

The second type of priors, contextual ones, are more 
changeable based on shorter-term implicit or explicit 
learning (Seriès & Seitz, 2013). Those expectations are 
bound to a specific spatiotemporal context or set of 
cues, so they are usually much more limited in applica-
tion. A typical example is the contextual cueing effect 
in visual search, where implicitly learned distractor 
configurations help to reduce target search times. 
Mooney images can also be put in this category because 
the acquired prior information will not bias perception 
of other inputs, even in encounters with similar objects. 
Here, too, evidence on intact contextual cueing in ASD 
does not support the weak priors account (Barnes 
et al., 2008; Brown, Aczel, Jiménez, Kaufman, & Grant, 
2010). Other tasks based on learned top-down influ-
ences yielded more conflicting findings. For example, 
Molesworth, Chevallier, Happé, and Hampton (2015) 
found reduced contextual influences in categorization, 
but Mottron, Burack, Iarocci, Belleville, and Enns (2003) 
and Loth, Gómez, and Happé (2010) found intact per-
formance in a silhouette identification task and a 
Mooney task, respectively. However, the latter two stud-
ies had very small sample sizes in both the number of 
participants and the number of trials/stimuli. Hence, 
we wanted to verify and extend our knowledge here, 
with a larger study that really tries to hone in on the 
top-down contribution in perception.

As an antipode to the weak priors case for ASD, 
schizophrenia is sometimes characterized as a matter 
of stronger top-down priors, hence an overconfidence 
in or overreliance on top-down constructs, at the cost 
of actual sensory inputs (Fletcher & Frith, 2009; Schmack 
et al., 2013; Teufel et al., 2015), possibly explaining the 
persistent delusions or hallucinations in these patients. 
In a recent study, Teufel et al. (2015) presented partici-
pants with two-tone images twice, once before expo-
sure to the full color images (“templates”) they were 
derived from, and once afterward. Participants had to 
indicate whether or not the Mooney images contained 
people, which was the case for half of the images. The 
difference in discrimination sensitivity before versus after 
exposure to the templates can be taken as a measure of 
the capacity to use top-down information to disambigu-
ate perceptual inputs. In their first experiment, Teufel 
et al. showed that patients in early stage psychosis ben-
efited more from the prior information compared with 
matched healthy participants. In addition, a second 
experiment confirmed that, in typically developing (TD) 
participants, too, psychosis-proneness (measured with a 
questionnaire) correlates positively with the improve-
ment based on top-down information.

Our own study largely mirrors that by Teufel et al. 
(2015) in schizophrenia, in that we also tested a clinical 
group, in this case individuals with ASD, in addition to 
a (larger) group of typical participants varying on a 
subclinical trait, in this case the Autism-Spectrum 
Quotient (AQ) questionnaire, which measures autism-
like traits. Indeed, there is evidence to suggest that 
autistic traits represent a continuum across the general 
population with individuals with an ASD diagnosis 
being situated at the extreme end of this distribution 
(e.g., Constantino & Todd, 2003). This continuum idea 
is also partly being incorporated in recent evolutions 
regarding the Diagnostic and Statistical Manual of 
Mental Disorders (5th ed.; DSM-5; American Psychiatric 
Association, 2013). The AQ has been introduced as a 
valuable instrument to rapidly screen where an indi-
vidual is situated on the hypothetical autism-spectrum 
continuum, ranging from “typicality” to ASD, and has 
been widely used in research practice (Baron-Cohen, 
Wheelwright, Skinner, Martin, & Clubley, 2001). More-
over, those autistic traits appear to be highly stable in 
the general population, regardless of the degree of 
autistic-like behaviors (Robinson et al., 2011).

Consistent with the WCC account and the weak priors 
account of ASD, we expect a reduced effect of prior 
knowledge, as measured with our Mooney task, reflected 
in a reduced performance improvement in adolescents 
with ASD compared with TD adolescents (Study 2). 
Similarly, in our typical population we expect that the 
performance improvement goes down with increasing 
autism-like behaviors (Study 1).

Study 1

Method

Participants.  After exclusions (see the Supplemental 
Material available online), complete data from 282 partici-
pants (40 males, Mage = 18.6, SDage = 1.91, age range 17–39) 
remained for further analyses. Participants completed the 
online task and questionnaire from home, as an obligatory 
part of their course program.

Stimuli and materials
AQ questionnaire.  We used a Dutch translation of 

the AQ questionnaire (Baron-Cohen et al., 2001; Ponnet, 
Roeyers, & Buysse, 2001). The chosen answers on each 
of the 50 items of the AQ questionnaire were coded into 
their corresponding binary score, and total AQ and sub-
scale scores were calculated by summation of all scores 
over the (relevant) items (as described in Baron-Cohen 
et al., 2001), resulting in six AQ (sub)scores per partici-
pant. A higher AQ (sub)score reflects the presence of 
more ASD-related traits.
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Mooney task.  We used 100 Mooney images selected 
from the stimuli created by Imamoglu, Kahnt, Koch, and 
Haynes (2012) by smoothing and thresholding a large 
number of grayscale images selected from an online data-
base using concrete search words and criteria. As a con-
sequence, the grayscale images from which the Mooney 
images were derived included a single, recognizable 
foreground object (animate or inanimate). In addition, 
we created 20 new Mooney images using similar pro-
cedures as Imamoglu et al. All images were 400 × 400 
pixels large. The resulting set consisted of 120 Mooney 
images and corresponding grayscale images.

Procedure.  The structure of our Mooney task was 
inspired by the experimental design in Teufel et  al. 
(2015). The Mooney task consisted of six experimental 
blocks. For each participant, a random set of 6 × 10 images 
was chosen from 120 possible Mooney images (with their 
corresponding grayscale image). Each experimental 
block consisted of three phases of 10 trials (10 different 
images). In the first phase (“pre phase”) participants were 
asked to identify the object in the image by typing one 
word into a response box. We urged participants to guess 
as much as possible, if they were not sure they could 
recognize the image, but they were free to just press 
enter if they had no clue at all. After these 10 trials, a 
template exposure phase followed. Participants were 
shown the 10 grayscale images that corresponded to the 
Mooney images they had seen in the previous phase. 
Each grayscale image was shown once, in random order. 
This phase provided participants with prior knowledge 
about image content necessary to perceive a coherent 
percept of the objects displayed in the Mooney images. 
To diminish purely bottom-up priming effects, Mooney 
and grayscale images were presented in blocks of 10 and 
never back-to-back. Finally, in the after-exposure phase 
(“post phase”), participants were presented with the 
same 10 Mooney images they had seen in the first phase 
of the block and were again asked to name the image in 
one word. Image presentation was again randomized. 
Participants had to press the enter key to start each new 
block or phase.

Mooney images were always displayed for 1 s in the 
pre and post phases; templates were shown for 2 s in 
the exposure phase. Interstimulus intervals were always 
750 ms. No measurements were made during the tem-
plate exposure phase in which participants passively 
viewed the grayscale images. During the recognition 
phases (pre- and postexposure phases), there was no 
time limit for naming the image. Each participant did the 
Mooney task before filling out the AQ questionnaire.

Our experimental design deviates from that by Teufel 
et al. (2015) in a few important ways. First, we did not 
use Mooney control images without identifiable objects. 

We used open responses, which, contrary to their yes/
no face detection task, did not require such control 
images. The reason for this is that identifying the spe-
cific content of the image is less likely to be possible 
based only on local features, but requires making a 
global match with the template. In addition, we wanted 
to stay away from face detection, which might be a 
special kind of stimulus for individuals with ASD, given 
their social problems. Second, we did not start the 
experiment with a practice run but immediately started 
with the first experimental block. Third, we ran 6 instead 
of 12 experimental blocks. Fourth, we used grayscale 
instead of color images to provide participants with 
top-down knowledge. Fifth, these grayscale templates 
were presented only once instead of three times during 
the exposure phase. Finally, Mooney images were 
shown for 1 s instead of 400 ms, with identical template 
exposure durations and intertrial intervals.

Statistical analysis.  Accuracy (0/1) per trial was deter-
mined based on a comparison of a participant’s answer 
with a list of possible answers for each image as deter-
mined beforehand. The list contained the exact basic 
level category of the foreground object in the Mooney 
image (e.g., snake but not animal or reptile), as well as 
synonyms and similar labels at the subordinate level 
(e.g., puma and leopard). Apart from the ground truth of 
the content, the response options were gathered by 
inspecting the data from a pilot test on 20 participants 
and from another 20 participants included in Study 1 for 
possible correct options. The algorithmic correction was 
done by applying a fuzzy string matching algorithm using 
the Levenshtein distance (Levenshtein, 1966). Accuracy 
was coded as 1 when a sufficiently high degree of simi-
larity between the typed answer and a possible answer 
was identified and coded as 0 when this similarity was 
lacking. Contrary to Study 1, autocorrected responses of 
Study 2 were manually validated to confirm that the algo-
rithm correctly accepted typographical errors, diminu-
tives, and plurals without creating any false positives.

Three Mooney images were generally not recognized 
even when previously exposed to the solution (specifi-
cally, less than 0.20% proportion correct in the post 
phase). Those were eliminated from further analyses, 
even though including them did not qualitatively 
change our findings.

We applied a generalized (logistic) linear mixed 
models (GLMM) on the binary accuracy data. AQ scores 
were standardized to ensure convergence of all model 
fits. The models were fitted with lme4 in R (Bates, 
Mächler, & Bolker, 2012). Complete source code, mate-
rials, data, and (extra) statistical analyses are available 
on the project page on the Open Science Framework 
(https://osf.io/4e7hr/).
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Results

The average AQ score (MAQ = 17.73), range of scores 
(3–43), and standard deviation (SDAQ = 6.61) are com-
parable with other studies using much larger and more 
diverse samples (Baron-Cohen et  al., 2001; Palmer, 
Paton, Enticott, & Hohwy, 2015; Ruzich, Allison, & 
Smith, 2015), despite the lower proportion of males in 
our sample and the fact that we used only psychology 
students. Seven participants even scored 32 or higher, 
which is in the range of scores of individuals with an 
ASD diagnosis (Baron-Cohen et al., 2001). This means 
that there should be a sufficient range to find a relation 
with task performance, should one exist.

In Figure 2 we plotted all accuracy data (pre phase: 
M = 0.22, SD = 0.09; post phase: M = 0.64, SD = 0.14) 
separately for lower and higher AQ, based on a median 
split of the AQ scores. In our GLMM analysis however, 
we added AQ as continuous variable instead of as a 
categorical level. Apart from AQ, the model included 
gender, block, and phase (pre vs. post exposure). There 
is a clear effect of exposure to the grayscale solutions 
(z = –36.17, p < .001) as can be seen from the differ-
ence in accuracy in the pre versus post phase (Fig. 1). 
The overall effect of block was significant (z = 2.36,  
p = .02), caused by the improvement in performance 
going from Block 1 to Block 2 (Fig. S2 in the Supple-
mental Material). We also obtained a significant interac-
tion effect of Block × Phase (z = 4.48, p > .001), 
indicating that people learned to make use of prior 

information across blocks. Gender does not affect per-
formance (z = 0.37, p = .71), nor does AQ (z = –1.67, 
p = .09). Crucially, the interaction effect of interest, 
between phase and AQ, was also not significant (z = 
1.18, p = .24), suggesting that the recognition benefit 
that people show after exposure with the template does 
not vary with ASD-related traits.

Likelihood ratio tests of the model with and without 
the interaction effect confirms that there is no evidence 
for the complexer model (χ2 = 1.39, p = .24), nor for 
the model including only a main effect of AQ compared 
with a model without AQ (χ2 = 1.43, p = .23).

Despite the lack of main effect of AQ, we examined 
the role of AQ in a more fine-grained way by testing 
the correlations of all five subscales of the AQ with the 
difference scores per individual. Those were computed 
by subtracting pre phase recognition accuracy from 
post phase accuracy, as a measure of the use of prior 
knowledge in perceptual recognition in our task. The 
only correlation that survives the more conservative 
(Bonferroni-corrected) .01 significance level, is with the 
Imagination subscale (see Fig. S1B). However, this cor-
relation is small (Pearson r = .17, p = .005) and is 
already present for the pre phase accuracy (Fig. S1C), 
suggesting that the spontaneous capacity to disambigu-
ate the Mooney image, rather than the use of prior 
knowledge per se, varies with the participant’s score 
on the Imagination subscale. Note that a higher score 
on the Imagination subscale means more autism-like 
here, meaning an impoverished capacity to imagine.
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Fig. 2.  A violin plot of the mean accuracies before and after exposure to the 
grayscale images separately for individuals with lower Autism Quotient (AQ) score 
(below median, in blue) and individuals with high AQ score (above median, in 
green). Dashed lines are median accuracies, dotted lines indicate quartiles (25th 
and 75th percentile). Envelopes are the kernel density estimation of the distribu-
tion of accuracies.
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Study 2

Method

Participants.  After exclusions (see the Supplemental 
Material), data for 23 adolescents with ASD (19 males, 
Mage = 14.04, SDage = 1.49) and 24 TD adolescents (20 
males, Mage = 14.38, SDage = 1.28), matched on age, gen-
der, and IQ, were available for analysis. IQ was estimated 
based on four subtests of the Wechsler Intelligence Scale 
for Children (Wechsler, 1991). The subtests used included 
Block Design, Picture Arrangement, Vocabulary, and 
Similarities. Participants completed our Mooney task as 
part of a larger test battery consisting of different experi-
mental tasks. Additional descriptive information about 
the presence of autistic traits was collected using the 
Dutch Social Responsiveness Scale (SRS; Constantino & 
Gruber, 2007; Noens, De la Marche, & Scholte, 2012), 
and a trained clinical psychologist administered the 
Dutch version of the Autism Diagnostic Observation 
Schedule 2 (ADOS-2) module 3 (Dutch version: de Bildt 
et al., 2009; Gotham, Risi, Pickles, & Lord, 2007) from all 
participants with a clinical diagnosis. ASD diagnoses 
were reconfirmed in 22 of the 23 adolescents, with the 
new ADOS Algorithm for DSM-IV/ICD-10 (ADOS-2). 
Because the analyses did not differ depending on whether 
we included or excluded the participant scoring below 
the ADOS-2 cutoff score, we followed the clinical diag-
nosis of the participants and reported the results of the 
full ASD group. An overview of the descriptive informa-
tion of both groups can be found in Table 1. All adoles-
cents had normal or corrected-to-normal vision and were 
Dutch-speaking. Recruitment of ASD participants was set 
up via the patient database of the Autism Expertise Cen-
tre of the University Hospital in Leuven. The study was 
approved by the Medical Ethics Commission of UPC-KU 
Leuven and participants provided written informed con-
sent before the start of the experiment.

Stimuli and procedure.  For this study we selected 60 
Mooney images from the 120 images used in Study 1. 

Mooney images that were either almost always or almost 
never recognized in Study 1 were gradually removed until 
60 images remained. Except for this, the same procedure 
applies as in Study 1, but given that we only kept 60 
images, all participants were presented with the same 
images in an equal number (6) of experimental blocks 
(still in a different random order for each participant). 
Contrary to Study 1, participants completed the task in a 
dimly lit experimental room (instead of online from 
home). Also contrary to Study 1, the responses of this 
study were manually instead of algorithmically corrected.

Results

Statistical analyses were identical to Study 1, except for 
the fact that we now have the factor Group (ASD vs. 
TD) instead of a continuous AQ score. The main results 
are summarized in Figure 3. Note first that the mean 
accuracies are generally higher than in Study 1 (pre 
phase: M = 0.29, SD = 0.10; post phase: M = 0.77,  
SD = 0.11), probably because of the elimination of the 
most difficult images, and because this study was per-
formed in the lab rather than from home. In our GLMM 
analysis, the main effect of Phase (pre/post) was 
strongly significant (z = –17.93, p < .001), indicating 
that participants used the prior knowledge they received 
in the exposure phase. Also similar to Study 1, there 
was significant learning across blocks (z = 7.73, p < 
.001), primarily from Block 1 to Block 2 (Fig. S3). How-
ever, there was no main effect of Group (z = 0.64, p = 
.52), indicating that overall accuracy was the same in 
both groups. The interaction of Group with Phase, our 
main focus here, was also not significant (z = 0.23, p = 
.82), consistent with what we found in the nonclinical, 
dimensional setting of Study 1. We also included IQ 
and overall SRS score as covariates in this GLMM model 
but only IQ significantly contributed to recognition 
accuracy (z = 1.97, p = .05).

Consistent with the above, in likelihood ratio tests, 
the interaction model (Group × Phase) did not have 

Table 1.  Overview of the Average Group-Level Scores on Descriptive Measures

Variable
TD participants, 

M (SD)
ASD participants, 

M (SD) TD vs. ASD
Group-level 
difference?

Agea 14.38 (1.28) 14.04 (1.49) t45 = −0.82, p = .42 No
Full-scale IQa 105.96 (8.69) 104.33 (8.74) t45 = −0.64, p = .52 No
Verbal IQa 105.83 (7.60) 102.87 (15.39) t45 = −0.84, p = .40 No
Performance IQa 106.00 (12.29) 108.09 (14.40) t45 = 0.54, p = .60 No
SRS (overall)b 49.46 (9.11) 80.26 (11.45) t45 = 10.23, p < .001 ASD > TD

Note: ASD = autism spectrum disorder; SRS = Social Responsiveness Scale; TD = typically developing. All 
tests are two-sample two-tailed t tests (comparison ASD group and matched TD group).
aNo group differences on age or IQ, given that groups (ASD and TD) were matched on these variables.
bWe found an expected significant main effect of group on overall SRS score and subscale scores, with 
higher scores in the ASD group compared with the TD group.



The Use of Prior Knowledge for Perceptual Inference	 7

significantly more evidence than the model with only 
a main effect of Group (χ2 = .05, p = .82); in fact, the 
latter model did not even have more evidence than the 
model without Group effect (χ2 = .61, p = .44).

Discussion

Our analyses consistently did not support a difference 
in the impact of top-down knowledge in perception of 
Mooney images, as a function of varying ASD-like trait 
or a clinical ASD diagnosis. These findings go against 
the weak priors and the WCC account of ASD, but they 
are consistent with other reports of intact use of both 
structural and contextual priors in ASD.

Our conclusion of a lack of main effect of AQ in 
Study 1 corroborates a study by Verhallen et al. (2014) 
that found no correlation between AQ and performance 
on a task in which participants needed to choose the 
Mooney image (out of three options) that contained a 
face. Although their single-phase task did not specifi-
cally manipulate top-down information, being a Mooney 
test it does examine a form of global integration of 
fragmented contours and/or back-and-white patches 
belonging to figure versus background. It is often 
assumed that people scoring high on the AQ question-
naire (or people with clinical ASD) have difficulties in 
forming global configurations but there is now solid 
empirical evidence against it (e.g., Almeida, Dickinson, 
Maybery, Badcock, & Badcock, 2014; Chouinard, 
Unwin, Landry, & Sperandio, 2016; Mottron, Belleville, 
& Menard, 1999; Mottron, Burack, Stauder, & Robaey, 

1999; Mottron et al., 2003). Our study confirms that AQ 
does not influence the global integration needed to 
disambiguate the Mooney images (similar performance 
in the pre phase) and also shows that the use of priors 
does not covary with AQ (no interaction effect of AQ × 
Phase). The latter is consistent with the intact influence 
of priors in perceptual illusions in individuals with high 
AQ (Buckingham, Michelakakis, & Rajendran, 2016; 
Chouinard et al., 2016).

Our post hoc tests did show that the AQ Imagination 
subscale does correlate significantly with Mooney per-
formance, but this not only affects the difference score, 
but rather is already present for the pre phase perfor-
mance. We should be careful in interpreting this finding, 
because the correlation is rather small and post hoc 
(though significant after correction) and given that an 
AQ subscale is based on only 10 items. Still, it seems 
that the worse a participant’s Imagination score (so the 
more ASD-related imagination), the less he or she is able 
to find a good solution for Mooney images (pre or post 
exposure). This might speak to the top-down, generative 
element needed for Mooney perception, but likely not 
the top-down strength per se but rather the flexibility in 
searching for alternative hypotheses, or in detaching 
from low-level inputs. Top-down (“search space”) flex-
ibility and top-down strength are closely related yet dis-
tinct capacities. The finding of a link between Imagination 
and first pass disambiguation of Mooney images under-
lines the need for more research into possible shared 
mechanisms between mental imagery, imagination, and 
top-down influences in perception, especially in relation 
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Fig. 3.  A violin plot of the mean accuracies before and after exposure to the gray-
scale images separately for individuals with ASD (in green) and typically develop-
ing (TD) control individuals (in blue). Lines represent individual mean accuracies. 
Envelopes are the kernel density estimation of the distribution of accuracies.
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to psychiatric disorders with known altered imaginative 
capacities (Crespi, Leach, Dinsdale, Mokkonen, & Hurd, 
2016).

We predicted that, if the weak priors account is on 
track, individuals with a high AQ score or who are 
diagnosed with ASD would benefit less than those with 
low AQ scores or those who do not have an ASD diag-
nosis (but matched age and IQ). Both of these predic-
tions were refuted, suggesting that the use of top-down 
information in Mooney images is very much intact in 
those groups. One earlier study on the perception of 
Mooney images in ASD is relevant in the context of our 
findings. Loth et  al. (2010) tested the recognition of 
Mooney images in 14 young adults with ASD (and a 
matched control group of 14 participants), before and 
after passive exposure to sequence of couples of a 
Mooney image and the corresponding grayscale image. 
Our study has a few advantages compared with this 
one. Most notably, the Mooney images and grayscale 
templates were never presented back-to-back in our 
study (as in Teufel et al., 2015), whereas this was the 
case for Loth et  al. This means that the latter study 
might have been measuring the effect of local percep-
tual features linked to the template solutions, instead 
of the effect of top-down knowledge on making a 
global match. In addition, we used a much larger stimu-
lus set (60 Mooney images vs. 20 in Loth et al.) and a 
larger participant group (23 vs. 14). This is no luxury 
in this type of research, characterized by large stimulus 
effects (some Mooney images are really compelling, 
others much less so), large individual differences (espe-
cially in the ASD group), and large interactions between 
individual and stimulus (one Mooney image may be 
very compelling or easy to solve for one individual, but 
not at all for another). Nonetheless, our findings confirm 
the lack of group differences that Loth et al. report for 
Mooney perception. The authors do note a selectively 
reduced postexposure performance for faces (so not for 
other objects), but given that this is based on even less 
images (data points), reliability is limited, without rep-
lication in an independent (larger) image sample. In any 
case, our stimulus set has only very few faces/people 
so we cannot test this possibility with our data.

Our results on intact use of top-down knowledge 
are also consistent with contextual cueing studies in 
ASD (e.g., Barnes et  al., 2008; Brown et  al., 2010), 
where the use of contextual priors is also intact, but in 
that case priors are learned during many blocks instead 
of the single exposure (“one-shot”) learning here. These 
findings also add to a series of reports of normal forma-
tion and/or use of priors in ASD in different settings 
(Ego et al., 2016; Pell et al., 2016; Spanò et al., 2015). 
However, other studies do claim to have found evi-
dence for weaker priors in ASD (Skewes, Jegindø, & 

Gebauer, 2015; Turi, Karaminis, Pellicano, & Burr, 
2016), so scholars performing future studies will have 
to systematically evaluate the differences in settings and 
priors concerned. One possibility is that priors can be 
learned but are not readily applied to as wide a range 
of stimuli as in typical individuals (Van de Cruys et al., 
2014; Van de Cruys, de-Wit, Evers, Boets, & Wagemans, 
2013) because predictions are more narrowly tuned to 
certain features. Generalization is known to be a prob-
lem in ASD (Plaisted, 2001), but our prior-based behav-
ioral tasks do not always examine this. Another 
possibility is that problems in ASD arise only with the 
learning or use of social priors (Balsters et al., 2017; 
Chambon et al., 2016), but then of course it would be 
interesting to discover what sets them apart in terms of 
the complexity of the generative models or in terms of 
neurobiological implementation. This may lead us to a 
view in which selectively the acquisition of priors in 
more complex environments is affected, for example 
in settings that are more volatile, that comprise multiple 
competing cues that all vary (signal and noise variabil-
ity), or in a combination of both. Under those circum-
stances, properly learning and updating priors for 
relevant cues requires meta-learning based on accurate 
estimates of uncertainties (Lawson, Rees, & Friston, 
2014; Van de Cruys et al., 2014; Van de Cruys, Van der 
Hallen, & Wagemans, 2017).

Little is known about the actual format of the prior 
induced with this kind of Mooney templates. A recent 
study in TD participants showed that word primes (e.g., 
“gorilla” if the Mooney contained a gorilla) or image 
primes of different exemplars of the same category as 
the object in the Mooney image (Nordhjem, Kurman 
Petrozzelli, Gravel, Renken, & Cornelissen, 2015) helped 
recognition as well, suggesting that an activation of a 
conceptual prior is sometimes sufficient to improve 
Mooney perception. Indeed, neural changes related to 
prior information for Mooney images can be found both 
in higher-level visual and in lower-level retinotopic 
areas, and those activity patterns are different from the 
neural correlates of conventional (feature-based) prim-
ing (Gorlin et al., 2012; Hsieh et al., 2010).

It might seem surprising that there were no group 
differences, not even in baseline performance, consid-
ering that the basic perceptual processes that this type 
of recognition relies on may be altered in ASD. For 
example, in a lot of two-tone images, lighting and shad-
ows causes (after thresholding) the wrong segmentation 
of objects that makes Mooney images hard to solve. For 
isolated objects, Becchio, Mari, and Castiello (2010) 
found that although shadows improve object recogni-
tion in TD children, they hamper recognition in chil-
dren with ASD. Another consequence of thresholding 
is the loss of figure-ground segregation, a function that 
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may also be weakened in ASD (Vandenbroucke, Scholte, 
van Engeland, Lamme, & Kemner, 2009). Mooney trans-
formations also cause the disappearance of (some) 
informative contours, hence the importance of (amodal) 
completion of contours based on neighboring surfaces 
or top-down information. Although the capacity to see 
illusory contours is intact in ASD (Milne & Scope, 2008), 
there is some evidence for reduced collinear facilitation 
and contour integration ( Jachim, Warren, McLoughlin, 
& Gowen, 2015; but see Keita, Mottron, Dawson, & 
Bertone, 2011).

One could very well criticize the assumption that our 
(and Teufel et al.’s) difference measure is a pure mea-
surement of strength of top-down priors. Like Teufel 
et al. (2015), we interpreted the progress from pre to 
post phase recognition as an effect of the successful 
application of top-down information (greater progress 
means greater top-down strength), but as indicated 
above, our measurement (and hence that of Teufel 
et  al.) may confound the formation of templates in 
memory with their subsequent use (application). We did 
not collect data on the memorability of individual tem-
plate images, but to indirectly probe the effect of memo-
rability on the difference scores we ran our grayscale 
images through a convolutional neural net (LaMem; 
Khosla, Raju, Torralba, & Oliva, 2015) that is trained for 
predicting memorability scores based on a very large 
image database. This network has been shown to reach 
near human consistency in predicted memorability (a 
rank correlation of .64 vs. .68 for humans). There was 
no correlation (r = –.019, p = .84) between memorability 
scores and difference scores, suggesting that memorabil-
ity of template images is not the most decisive factor in 
the improvement in performance.

In conclusion, we found that individuals with ASD 
or with high ASD-related traits performed similarly to 
TD participants or low-AQ individuals on a task that 
measured the use of top-down priors in perceptual 
inference. These findings go against the weak priors or 
WCC account of ASD, suggesting that these individuals 
can form and apply contextual priors that help to orga-
nize fragmented inputs. Further characterization of the 
precise conditions in which acquisition or use of priors 
is compromised in ASD is an important goal for future 
studies.
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